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We reexamine the phase diagram of the square-well potential, using both theoretical and computer-
simulation techniques, for not too short ranges of the potential. The phase diagram turns out to contain a
variety of crystalline structures, both compact and, interestingly, also noncompact. The latter result from a large
increase in negative energy when pairs of particles come at distances within the interaction range, which more
than compensates the entropy loss associated with reduced packing. Transitions between these crystalline
structures give rise to a surprisingly rich phase diagram.
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I. INTRODUCTION

The square-well �SW� pair potential is a cornerstone of
the theory of simple liquids �1�, and is still extensively used
to study complex systems, from molecular liquids to glasses
�2–6�, and in other problems such as confinement �7�, freez-
ing �8�, criticality �9�, and more �10–12�. Although not com-
pletely realistic, the potential has been used to represent ef-
fective interactions in interesting physical systems such as
colloids, proteins, alloys, or even water �13–16�. Its phase
diagram includes a freezing transition from liquid to a �com-
pact� face-centered cubic �fcc� crystal, along with liquid con-
densation at low temperature. As the range of the potential
�+� �where � is the hard-sphere �HS� diameter� decreases,
condensation eventually disappears, while the system under-
goes an isostructural transition between two fcc solids of
different density �17–19�. The latter occurs when some pairs
of neighbors are at distances close to �+� so that, in prin-
ciple, a family of similar transitions should operate associ-
ated to nearest, next-nearest, etc., distances. This phase dia-
gram has been confirmed by simulation and theoretical work.
In addition, pioneering work by Young �20� and Alder and
Young �21� demonstrated that the hexagonal close-packed
�hcp� structure may also be stable for � /���8/3�0.63 and
that, even more surprising, the body-centered cubic �bcc�
structure, a noncompact structure, could be stable for � /�
�2/�3�0.15; these findings, however, have not been con-
firmed by computer simulation. In this paper we show that
the phase diagram of the SW model may be much more
complex than the above picture implies. Using simple argu-
ments, corroborated by sounder theoretical techniques and
computer simulations, we find that, not only can the bcc
structure be stabilized, but also a variety of other noncom-
pact crystalline phases, provided the potential range is not
too short ���0.15��. These structures result from a particu-
larly favorable arrangement of pairs of particles that, depend-

ing on the crystalline structure, may come within the inter-
action range �i.e., within the potential well�; this involves a
large lowering of the energy which counterbalances the loss
of entropy due to these structures being more open, i.e., less
compact. Our study was focused to understand a point ap-
parently missed by previous authors. For values of � such
that the fcc-fcc transition is due to next-nearest neighbors,
the temperature of the gas-liquid-solid triple point TGLS is
higher than that of the gas-fcc-fcc triple point TGSS. But TGSS
increases with �, while TGLS changes by a small amount, so
that both should be identical for some �*, and a quadruple
point should arise �22�, a rather unusual situation for one-
component systems but quite plausible if the model has an
extra degree of freedom �23�, in our case �. The point is that,
depending on the approach used for the HS reference system,
perturbation theory predicts either the picture described
above, with a quadrupole point in the phase diagram for a
particular value of �, or the presence of an island of fcc
stability in the same region of the phase diagram and in a
range of values of �. The dependence on the chosen refer-
ence system is due to the strong sensitivity of the coexistence
conditions to small variations in the free energy surface. In
the process of elucidating this point by Monte Carlo �MC�
simulation, we found that the fcc crystal is not stable in the
neighborhood of TGLS and that other, noncompact, crystalline
phases become stable.

In Sec. II we propose, using a simple heuristic model, a
mechanism which explains the possible stability of different
structures. Section III is devoted to a generalization of per-
turbation theory which aims to describing the Helmholtz free
energy of these structures. Due to the complexity brought
about by the structural anisotropies, we keep the theory as
simple as posible while still including the essential physical
features. This theory predicts a complex phase diagram
where the fcc structure is not the equilibrium structure in the
low-temperature region, as was thought to be the case; in this
region a series of different structures appear. To confirm this
behavior we present, in both Sec. IV and the Appendix, some
MC simulation results obtained using isothermal �NVT� and
isobaric �NPT� techniques. The simulation results support the*Electronic address: guillermo.navascues@uam.es
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essential predictions of the theory. Using our theoretical ap-
proach and MC simulations we have explored the SW phase
diagram for different values of �. As � is varied, the stability
regions of different structures are reduced or increased, and
new structures may appear and others disappear �this behav-
ior has already been observed by Young �20� using a cell
model, but restricting attention to a limited number of
phases�. All results presented here correspond to a specific
value of the potential range, namely, �+�=1.43. We con-
sider this as a representative case in the sense that it illus-
trates how the fcc structure is superseded by other structures
at the low-temperature region of the phase diagram. There
are other �minor� reasons why we choose this specific value
of �, but they will become clear only when we present the
final phase diagram. In order to get an idea of the range of
this potential, we can integrate the attractive part of a
Lennard-Jones potential with the same well depth � and
length � parameters, and compare the result with the corre-
sponding integrated square-well potential; equality is ob-
tained when �+��1.54�, which means that the square-well
potential that we are about to analyze is not very long ranged
at all.

II. SIMPLE HEURISTIC MODEL

In order to understand how crystalline phases become
stable, we first provide a heuristic argument based on the
number of neighbors—strictly of lattice sites �24�—of a
given particle that are inside the well, m, a quantity which
will play an essential role. Thus, the isoestructural transition
involves the phases fcc�12� and fcc�18�, with six neighbors
coming into �or going out from� the potential well �the num-
ber in parentheses is the value of m for the corresponding
phase�. The question about the identity of the stable phase
that supersedes the usual fcc phase can be answered by
searching for those structures compact enough to minimize
the energy but, at the same time, as symmetric as possible to
maximize the entropy. As a first candidate we consider a
generic body-centered tetragonal �ct� structure �see Fig. 1�
which is stretched or compressed only along one of its edges
�by varying a3 with a1=a2�, so as not to introduce large
anisotropic deformations. This structure may generate a fcc
structure when a3 /a1=�2, but also a bcc structure if a3 /a1
=1, and a particularly symmetric ct structure �25� �denoted

by ct�� for a3 /a1=�2/3. In our search for the more stable
structures we found it convenient to work at constant mean
number density �=2/a1

2a3, so that only one lattice parameter,
say a1, can be varied. Figure 2 shows the distance rn of the
first four shells of neighbors, n=1, . . . ,4, to a central par-
ticle, as a function of a1 and at reduced density ��3=1. Note
that the behavior of rn, and hence m, depends very sensi-
tively on both the shell index n and the lattice constant a1,
and this simple but not regular dependence gives the clue for
determining the possible stable structures. From the figure
we see that, as a1 increases from � to ��2, we have m=16
�ct�16� structure�, then m=12 �ct�12�, including the case
fcc�12� for a1=21/6��, and finally m=14 for 1.18�	a1

��2 �ct�14�, including the cases bcc�14� and ct��14� for
a1�1.26� and a1�1.35�, respectively�. Based on Fig. 2
and using simple arguments one can predict approximately
the sequence of stable phases. The entropy can be estimated
as a function of a1, since it should be approximately propor-
tional to the logarithm of the accesible volume and this is
determined essentially by the location of the nearest neigh-
bors, indicated by a thick line in Fig. 2. Thus, the entropy
should first increase up to a maximum �fcc�12� structure�,
then decrease down to the local minimum �bcc�14��, increase
again up to the secondary maximum �ct��14��, and finally
decrease; this behavior agrees with the predictions of a more
sophisticated model �see Sec. III�. Note that all structures
have a lower entropy than the fcc�12� structure; however, in
the interval 1.18	a1 /�
�2 the ct�14� structure has two ad-
ditional neighbors in the well which lowers energy but also
entropy. In order to discriminate between these structures
with 14 neighbors, we go a little further and propose an
additional condition: to maximize the energy decrease, the
additional particles �which can be two or four, apart from the
main set of eight� should be well inside the attractive well,
i.e., the distance of their lattice sites—equilibrium

FIG. 1. Generic body-centered tetragonal �ct� structure showing
different lattice sites in the neighborhood of a given central site.
Sites belonging to the same neighbor shell are indicated by the
same symbol.

FIG. 2. Distance from a central particle to four successive shells
of neighbors versus lattice parameter a1 for a generic ct structure.
The mean number density is ��3=1. Identity of each shell is indi-
cated by symbols �see Fig. 1�, together with its coordination. Thick
line gives distance to nearest neighbors. Locations of fcc, bcc, and
ct� structures are indicated by an arrow. Shaded region represents
radial distances r��+�, with �=0.43�. Values of m in each inter-
val of a1 are also indicated.
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positions—to the boundary of the potential well must be at
least equal to the root mean square deviation of the corre-
sponding particles, roughly estimated as the nearest-neighbor
distance minus �. This argument excludes the lower values
of a1 in the interval 1.18
a1 /�
�2, corresponding to two
additional particles, and also the higher values, where four
particles are too close to the boundary of the well. Thus
possible stable structures are reduced to a small region
around bcc�14�, which is remarkable as it suggests that a
typical noncompact structure in systems with soft repulsive
interactions can also be stable for the SW model, an attrac-
tive model with hard-core interactions. Note that the ct�16�
structure, with values of a1 very close to �, should also be
excluded except at sufficiently low temperatures, because de-
spite having m=16, four of them are not deep inside the well
and its low entropy cannot be counterbalanced by energy.
Doing the same analysis at different densities we arrive at
the following sequence of possible stable crystalline
structures, from low density to close packing: bcc�14�-
ct��14�-ct�14�-fcc�18�. Naturally, when the temperature is
high enough only the fcc crystal will be stable.

III. A PERTURBATION THEORY

Thus far the discussion has focused on a plausible mecha-
nism that might induce the stabilization of noncompact struc-
tures. To confirm the above conjectures we have formulated
a simple perturbation theory, complemented with MC simu-
lations to be presented in Sec. IV. The theory is based on a
generalization of the free-volume approach for the entropy of
the HS solid �26� that takes account of the structural
anisotropies of the crystal and, in the same spirit, of the
corresponding generalization of the angular-averaged HS
distribution function �27�. The theory also introduces an ad
hoc model to incorporate the geometry of the different struc-
tures. The Helmholtz free energy expression for the SW
model, up to first order, is given exactly by �28�

�F

V
=

�FHS

V
− 2�2��

�

�+�

dr r2g̃HS�r� , �1�

where FHS and g̃HS�r� are the Helmholtz free energy and the
angular-averaged distribution function of the HS reference
system, respectively, V is the volume, and �=1/kT. For the
liquid phase the HS free energy was taken to be given by the
Carnahan-Starling �29� expression, whereas the function
g̃HS�r�, which in this case reduces to the usual radial distri-
bution function, was approximated by the Verlet-Weis ex-
pression �30�. The free-volume expression for the Helmholtz
free energy of the crystal is

�FHS

V
= − � ln

v���
�3 , �2�

where v��� is the free volume �i.e., the volume available to a
given sphere assuming all the neighbor spheres are fixed at
their equilibrium sites�, and � the thermal wavelength. The
analytic expression for the free volume can be obtained ex-
actly for a given crystallographic structure, but only after
some laborious analytical work �especially if the structure

does not possess a high symmetry�. For simplicity we have
chosen to evaluate the free volume by MC integration in all
the structures analyzed. The second ingredient of the theory
is the function g̃HS�r�. For the fcc phase all the peaks of this
function, except the first, are very accurately given by the
convolution of the local density ��r�. To be more precise,
simulation results show that there is no significant numerical
difference between the peaks of the function g̃HS�r� and those
obtained from the convolution of ��r�. This means that the
essential correlations in ordered phases are somehow ex-
tended up to relatively short distances, maybe including
next-nearest neighbors. We will assume in what follows that
this is the case in all structures formed out of hard spheres; in
fact, the results to be presented later show that this assump-
tion should hold or at least be very accurate. Thus we ap-
proximate the angular-averaged distribution function, at dis-
tances beyond nearest neighbors, by

g̃HS�r� �
1

4V�2 � dr�� d�̂ ��2��r + r�,r��

�
1

4V�2 � dr�� d�̂ ��r + r����r�� , �3�

where ��2��r ,r�� is the two-body distribution function, and

d�̂ is the solid-angle differential. Now the first peak gener-
ated by this expression and corresponding to the nearest
neighbors must be modified so that it exhibits a correlation
hole of range � �which is realized in practice by simply
setting g̃HS�r� to zero for r
��. Also, the first peak has to be
renormalized so as to give the correct number of nearest
neighbors �in fact a renormalization of the second peak is
also necessary at densities low enough that the peak extends
to distances less than ��. A more accurate approximation for
this peak could be made �for example, by generalizing the
self-consistent theory recently proposed by some of us �31��
but in the present case this is actually unnecessary since the
peak lies completely inside the potential well and conse-
quently contributes with a constant value �equal to the num-
ber of nearest neighbors multiplied by � /2� to the free en-
ergy, regardless of its functional form �this also applies to the
second peak for phases such that at low density the peak is
completely inside the well�. Taking this fact into account, the
problem of finding g̃HS�r� reduces to obtaining the local den-
sity ��r�, defined as

��r� = 	
i

�1�r − Ri� , �4�

where �1�r−Ri� is the distribution function of the ith particle
about its equilibrium position, given by the lattice vector Ri.
An interesting feature of the present study is that some of the
phases we are dealing with do not have cubic symmetry, and
consequently their corresponding function �1�r� cannot be
approximated by a spherically symmetric Gaussian function,
as in the case of the fcc phase or �to a lesser extent� the bcc
phase. Thus, in order to incorporate the local anisotropy, we
propose a normalized Gaussian with a general quadratic form
as argument:

NONCOMPACT CRYSTALLINE SOLIDS IN THE … PHYSICAL REVIEW E 73, 011110 �2006�

011110-3



�1�r� =��x�y�z

3 e−��xx2+�yy2+�zz
2�. �5�

To determine the Gaussian parameters we impose three con-
ditions. The first is a generalization of our free-volume ap-
proach for cubic structures; in that case �x=�y =�z=�, and
the free volume is identified with the spherical volume de-
termined from rrms�
r2�1/2 �the root mean-square displace-
ment �26��:

v =
4

3

rrms

2 �3/2 =
4

3
� 3

2�
3/2

. �6�

A direct generalization to the general anisotropic case gives

v =
4

3
� 3

2�x
1/2� 3

2�y
1/2� 3

2�z
1/2

. �7�

Note that Eq. �7� corresponds to the volume of an ellipsoid
with semiaxes �3/2�x�1/2, �3/2�y�1/2, and �3/2�z�1/2. For the
�cubic� fcc structure this simple approach gives numerical
results remarkably similar to those found using density-
functional theories, which are computationally more de-
manding. Also, reasonable results are obtained for the bcc
phase, for which density-functional theory generates un-
physical results �26�. In the general, anisotropic case, the
volume itself is unable to characterize the anisotropy, so two
additional conditions are required. A natural choice is to re-
late the Gaussian parameters to the particle mean-square dis-
placements 
x2�, 
y2�, and 
z2� along the x, y, and z, direc-
tions, respectively, which can be obtained independently by
some numerical means. The relations are


x2�

z2�

=
1/�x

1/�z
�8�

together with


y2�

z2�

=
1/�y

1/�z
. �9�

In what follows it is to be understood that these thermal
averages have been obtained via Monte Carlo integration,
i.e., 
¯�= 
¯�MC, in much the same way as the free volume
v��� in Eq. �2� will be assumed to have been computed using
numerical integration. Note that several equivalent prescrip-
tions to describe the anisotropy are possible. Obviously, for
cubic structures, 
x2�= 
y2�= 
z2�, and the three Gaussian pa-
rameters are identical. In almost all cases to be studied in the
present work there are at least two equivalent directions, say
x and y, so that �x=�y which, for the sake of simplicity, we
rename as � �we must say that phases with �x��y have
been analyzed in the present work, but the corresponding
anisotropic structures always happen to be metastable�. In
these cases the conditions �7�, �8�, and �9� reduce to

v =
4

3

3

2�
� 3

2�z
1/2

�10�

and


x2�

z2�

=
1/�

1/�z
. �11�

In principle, as v, 
x2�, 
y2�, and 
z2�, which clearly depend
on the lattice parameters a1, a2, and a3, are known from MC
integration, one could evaluate the Gaussian parameters �
and �z directly. However, we must bear in mind that the
relation �=��a1 ,a2 ,a3� for the mean density still leaves two
independent ways in which the unit cell can be deformed, so
that additional conditions are required. Here we introduce an
ad hoc geometrical model, inspired by the heuristic model
introduced in the previous section, which is very simple for
phases with a1=a2 and slightly more complicated in the gen-
eral case. Here we restrict ourselves to the former, simpler
case, where a1=a2 and the relation �=��a1 ,a3� leaves only
one independent lattice parameter �say a1�, and therefore
only one additional relation is needed. The idea behind the
model is straightforward: in order to minimize the free en-
ergy, we optimize the structure of the unit cell by increasing
the free volume available to a central sphere �so as to maxi-
mize entropy� while at the same time the energy contribution
is maximized. The optimization of the structure is realized in
practice by applying an appropriate, volume-conserving, an-
isotropic deformation to the unit cell, with the property that
the shell of neighbors of the central sphere �henceforth called
boundary spheres� closest to the boundary of the well �which
is located at r=�+�� is completely inside the potential well.
In practical terms, completely means that the distance of the
boundary spheres to the boundary of the well is taken to be
equal to the semiaxes �3/2�i�1/2, where i=x, y, or z �depend-
ing on the direction along which the neighbors are arranged�,
so that most of the time �or, more precisely, in most of the
possible particle configurations� these spheres are inside the
potential well. The condition leads to

� + � = d + � 3

2�i
1/2

, �12�

where d is the distance from the central sphere to the bound-
ary spheres �which also depends on the type of structure�.
For instance, for a generic ct�14� phase �obtained, say, when
a1 /�=1.2�, the ellipsoid associated with the Gaussian func-
tions of the two boundary spheres �open triangles in Figs. 1
and 2�, which lie along the z direction, can be easily seen to
have a symmetry axis parallel to the radial direction. More-
over, as seen from Fig. 1, d=a3, and the condition reads

� + � = a3 + � 3

2�z
1/2

. �13�

In the case of the ct�16� phase �take a1 slightly larger than �;
see Fig. 1�, the symmetry axis of the corresponding Gaussian
functions points in the z direction and is therefore perpen-
dicular to the radial direction �the boundary spheres are on
the xy plane; open squares in Figs. 1 and 2�. In this case
d=a1

�2, and
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� + � = a1
�2 + � 3

2�
1/2

. �14�

In summary, solving for each structure Eqs. �10�–�12� simul-
taneously, along with the expression for the mean density �
=��a1 ,a3�, we can obtain an approximation for g̃HS�r�. With
this approximation and Eq. �2� the Helmholtz free energy can
be evaluated directly via perturbation theory, Eq. �1�. The
same procedure can be repeated for all phases. Note that in
the case of phases, such as the cubic phases or the ct��14�
phase, for which the density already determines the lattice
parameters in a unique way, the optimization of the structure
is not necessary. More involved calculations, based on more
sophisticated approaches, could be carried out. Besides the
above-mentioned self-consistent evaluation of FHS and
g̃HS�r�, one could introduce some minimization principle, for
instance instead of fixing the position of the boundary
spheres following the criterion implicit in Eq. �12�, we could
minimize the free energy with respect to this position. Alter-
natively we could minimize the free energy with respect to
the Gaussian parameters. However, these improvements
would complicate the calculations significantly and, since we
have already developed a simple procedure that should con-
tain the essential physics of the problem, we will not imple-
ment any of these more involved approaches. The above
theory has been applied to the fcc, bcc, ct��14�, ct�14�, and
ct�16� phases, and also to the hexagonal �hex�20�� structure
�with a1=a2�a3�, which contains 20 particles inside the
well �32�. Furthermore we have studied the simple cubic �sc�
and some simple monoclinic structures obtained by applying
relatively symmetric deformations �e.g., shearing� to the ct
phase. None of these become thermodynamically stable,
though they are metastable in some range of temperatures
and densities. We will not discuss these phases any further,
but it is interesting to mention that these phases, albeit meta-
stable, do appear in the computer simulations, possibly as
transient or nonequilibrium phases. The phase diagram ob-
tained is shown in Fig. 3. As can be seen the theoretical

predictions basically agree with our previous conjectures
based on the simple heuristic model, even as far as the rela-
tive stability of the phases is concerned.

IV. COMPUTER SIMULATION

To corroborate this complex phase diagram extensive MC
simulations were conducted on systems with N�102–103

particles, using constant-volume �NVT� and constant-
pressure �NPT� runs and typically �0.5–1��105 MC steps.
In NVT simulations the box sides were allowed to fluctuate
with the restriction V=const, so that the system could better
accommodate different crystal deformations without accu-
mulating any anisotropic stresses. In fact, during the simula-
tions the box lengths fluctuate about a �constant� average
value, which we assume to indicate a situation of equilib-
rium. Also, average positions of the particles were monitored
during the simulations in order to see whether groups of
particles could be escaping from their cages, or crystallo-
graphic planes could slide with respect to each other. This
information is similar to that gathered by computing elastic
constants, which would give a clear indication as to the me-
chanical stability of the different structures, but is a major
task to accomplish �given the discontinuous nature of the
potential� and will not be pursued here. Note also that no
attempt was made to evaluate the free energy by computer
simulation, except for the vapor, liquid, fcc, and hex phases,
for which thermodynamic integration schemes can be de-
signed and their corresponding coexistence lines computed
rigorously. One obvious limitation of the above simulation
techniques is that the number of particles N is fixed, so that
we have to impose a given structure at the beginning �grand
canonical Monte Carlo simulation is impractical for crystal-
line solids� and hope that the structure is stable. In most
cases the system undergoes a transition to a different crystal-
line structure with the same number of particles per unit cell,
so that the above techniques can in fact reach the equilibrium
phase by way of deforming the unit cell. This is not always
the case, and parameters such as number of particles �among
the set of possible values for the given structure� and tech-
nique used �NVT or NPT� affect the final outcome of the
simulation. This is not a problem since, in all cases, an
equilibrated state is easily detected by monitoring the evolu-
tion of box lengths and average positions; when these criteria
were not met, the final configuration was rejected. �In the
Appendix we include some details of simulations which ex-
plicitly demonstrate the instability of the fcc phase over a
large region of the phase diagram. Finite-size effects on the
bcc�14�, ct�14�, and hex�20� phases are also included in the
Appendix.� The results are contained in Fig. 4. The fcc�18�-
fcc�12�, hex�20�-fcc�18�, fcc�12�-liq, and liq-vap phase tran-
sitions thus located are indicated by continuous lines. The
remaining, dotted lines correspond to approximate location
of phase transitions, based on NVT and NPT simulations �in
some cases particles in the simulation box simply adopt a
new periodic arrangement on changing thermodynamic con-
ditions; in other cases instabilities are signaled by deforma-
tions of layers of particles or the unit cell�. These lines indi-
cate approximately the average of the two points marking the

FIG. 3. Phase diagram for the square-well model with �
=0.43� in the reduced pressure–reduced temperature plane, as ob-
tained from the perturbation theory proposed in the text. Kink in
fcc�18�-fcc�12� transition line is due to a change in the pressure
scale. Lines indicate first-order phase boundaries. Circles are criti-
cal points. Dots indicate that phase boundary continues indefinitely.
See text for an explanation of labels.
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end of metastability of each of the two phases that coexist. In
the region labeled with “?” we found it difficult to obtain the
stable structure since the system does not seem to reach equi-
librium. In any case these simulations can only provide at
most limits of stability, and the results are only indicative of
the possible thermodynamic phase coexistence. However, the
simulations undoubtedly indicate that the fcc phase is un-
stable over a large region of the phase diagram, and that
some of the noncompact phases obtained by the theory are at
least metastable and good candidates for stable phases. Note
also that the region where these phases appear to exist, ac-
cording to simulation, is considerably larger than predicted
by theory.

V. DISCUSSION

To appreciate in more detail the predictive power of the
theory we have analyzed the results along the isotherm T
=0.7� /k since it crosses a number of different phases. In Fig.
5 the theoretical Helmholtz free energies for this isotherm
are shown in a particular range of densities. For the sake of
clarity we do not include the sc, hex�20�, and simple mono-

clinic structures mentioned above. All of these structures are
metastable in a small range of densities. However, the ct�16�
phase, which is also metastable, is included for reasons that
will become clear later. We define an order parameter � as

� = 1 −
a3

a1
�2

�15�

which describes the anisotropy of the phases with a1=a2 and
discriminates between different phases with the same sym-
metry; the presence of the factor �2 ensures that �=0 for the
fcc phase. Note that Eq. �8� could also be adopted as an order
parameter; however, this parameter is less sensitive to aniso-
tropy and, in particular, it does not discriminate between the
fcc and bcc phases since in the two cases 
x2� / 
z2�=1. For
the cubic phases fcc and bcc, � has density-independent val-
ues, viz., 0 and 1−1/�2, respectively, and also for the aniso-
tropic phase ct��14� for which �=1−1/�3 �see Sec. II�. For
the remaining phases � depends on the density. In Figs. 6–8
we compare the theoretical predictions for the order param-
eter and the angular-averaged distribution function along the
isotherm T=0.7� /k with the corresponding results obtained
by simulation using the NVT ensemble. This simulation starts
from a fcc�18� structure and proceeds by successive expan-
sions, allowing for fluctuations of the sides of the simulation
box. In this way we can reach any tetragonal structure and
avoid the unknown nontetragonal phase mentioned above.
Figure 6 shows the order parameter �. In general terms the
theory agrees reasonably with the simulations. Let us be
more specific and discuss these results in connection with
Figs. 3 and 5. At high density ���3	�2� the stable phase is
a fcc�18� phase. As the system is expanded at constant tem-
perature the parameter � continues to be zero, but at some
density the fcc�18� phase becomes unstable, and � takes a
nonzero value. This can also be seen by examining the par-
ticle configurations in the simulations. As can be seen in the
figure the order parameter indicates that the system adopts a

FIG. 4. Same as in Fig. 3 but as obtained from Monte Carlo
simulation. Dotted lines represent approximate phase boundaries as
follow from NVT and NPT Monte Carlo simulations. Continuous
lines are first-order coexistence lines obtained from free-energy
calculations.

FIG. 5. Helmholtz free energy per unit volume versus reduced
density for the square-well model with �=0.43 at temperature T
=0.7� /k and for different phases. All results have been obtained
from perturbation theory.

FIG. 6. Order parameter � versus reduced density ��3 at tem-
perature T=0.7� /k for different phases of the square-well model
with �=0.43�. Continuous lines, perturbation theory. Open circles,
computer simulations. Filled circles, simulation runs of the ct��14�
structure with a fixed simulation box. Arrows indicate limits defin-
ing density intervals where the corresponding phase is predicted to
be stable according to perturbation theory.
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ct�16� structure; this is at variance with the theory which, as
suggested by the phase diagram of Fig. 3, predicts coexist-
ence between the fcc�18� and the ct�14� phases. Note how-
ever that, as shown in Fig. 5, the theoretical free energies of
the ct�14� and ct�16� phases are very similar in this range of

densities, and also that NPT simulations show that the ct�16�
phase is metastable with respect to direct coexistence be-
tween the ct�14� and fcc�18� phases. Then, since the simula-
tion procedure allows for fluctuations in the sidelengths of
the simulation box, the system could very well be exploring
phases with different symmetries but very similar free ener-
gies and connected by a small free-energy barrier. In any
case the theoretical predictions on the value of � for the
ct�16� phase are confirmed by simulation. The system re-
mains in the ct�16� phase in a range of densities but, at
��3�1.3, the free energy of this phase becomes much
higher than that of the ct�14� or fcc phases �see Fig. 5�, and
� fluctuates, indicating that the system enters a region of
two-phase coexistence. At lower densities, ��3�1.28, the
order parameter follows the theoretical predictions for the
ct�14� phase. As we continue to expand, the system goes
directly to the bcc�14� phase after crossing a relative large
region of instability, a region that was analyzed in the previ-
ous section. This is again in disagreement with the theory,
which predicts stability in an intermediate ct��14� phase. As
it is turns out it is possible to stabilize the ct��14� phase in
the simulation, but only by imposing the appropriate crystal-
line structure with a suitable simulation box with fixed side
lengths. In this case the resulting values for the order param-
eter will necessarily agree with the theoretical predictions.
Note that the order parameter � is independent of tempera-
ture since it is defined in terms of the lattice parameters
which, in perturbation theory, only depend on the �athermal�
HS reference system. This is essentialy true, as the simula-
tion results demonstrate. In Fig. 7 we show the behavior of �
with temperature for the ct�14� and ct�16� phases at two par-
ticular densities. As can be seen, � changes significantly with
density but, in the ct�16� phase, it hardly differs from the
constant behavior predicted by the theory at fixed density,
and it exhibits only a small decrease in the case of the ct�14�
phase. In Fig. 8 we show the function g̃HS�r� for the different
stable phases, as predicted by theory, along the isotherm T
=0.7� /k �each phase is shown at a different density�. The
same function at the same temperature and for a density cor-
responding to the ct�16� phase is also shown. For the sake of
comparison, we also include the function g̃SW�r� as obtained
by computer simulation for the same phases and at the same
conditions of density and temperature. Despite being differ-
ent functions in nature, the reference function g̃HS�r� is the
zeroth-order approximation to g̃SW�r� in perturbation theory,
so that the comparison can help to grasp the accuracy of the
theory and also the essential structural properties of the
phases. One should remember that, provided that the first
peak is normalized to the number of nearest neighbors, all
the results are insensitive to the functional form adopted so
that we should guarantee only the normalization. Also note
that the function g̃HS�r� is indeed a reasonable approximation
to g̃SW�r� for all the phases. However, the most significant
conclusion we can draw from these results is that, despite its
simplicity, the theory is capable of describing the anisotropy.
The peaks of the radial distribution function have approxi-
mately the same width, except in the ct�16� phase where
there are both narrow and relatively sharp peaks, sometimes
close to each other. To understand this let us focus on the

FIG. 7. Behavior of the order parameter � with reduced tem-
perature kT /� for the square-well model with �=0.43�. Open
circles are simulation results starting from a ct�14� phase at reduced
density ��3=1.20. Solid circles are simulation results starting from
a ct�16� phase with reduced density ��3=1.33. Continuous lines are
constant values predicted by perturbation theory.

FIG. 8. Angular-averaged distribution function for the HS
model as obtained by theory �continuous line� and for the square-
well model with �=0.43� as obtained by simulation �circles�, both
at reduced temperature T=0.7� /k. �a� bcc phase with reduced den-
sity ��3=1.00; �b� ct��14� phase with ��3=1.10; �c� ct�14� phase
with ��3=1.20; �d� ct�16� phase with ��3=1.35; �e� and �f� fcc�18�
phase with ��3=1.40.
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third and fourth peaks which, at the chosen density, are lo-
cated at each side of the SW discontinuity. The distribution
functions �1�r� corresponding to the third and fourth peaks
are such that their associated Gaussian functions have a
semimajor axis perpendicular �open squares in Fig. 1� and
parallel �open triangles� to the radial direction, respectively
�remember that their Gaussian parameters are related to the
axes of the ellipsoid�. Since the anisotropy of the Gaussian
functions of the ct�14� and ct��14� phases is not very high, its
effect on g̃ is not very apparent. The hexagonal structure,
which together with the fcc�18� and a rarified vapor phase,
remains stable up to T=0, is a clear example that stability
depends very sensitively on �. When � is slightly less than
0.43�, the structure disappears altogether from the phase dia-
gram, allowing for the possibility that the previously dis-
carded ct�16� structure may become stable at sufficiently low
temperatures �at very low temperatures though, a simple cu-
bic sc�18� structure would be more stable, with direct transi-
tions to vapor and fcc�18� phases�. On the other hand, for
��0.43� the hex�20� structure would significantly increase
its stability. As a general rule, an increase in � entails a
considerably larger number of possible stable structures,
probably with relatively small deformations. For example,
for �+��1.63�, an argument based on results similar to
those shown in Fig. 2, together with computer simulations,
indicates that the hcp structure becomes stable at densities
where the high-density fcc�18� structure would otherwise be
stable. These results for the bcc and hcp phases basically
agree with those found by Young �20� using a spherical
Lennard-Jones-Devonshire-cell approach. However, aside
from these phases, Young only considered the sc phase, and
found it not to be stable, which is at variance with our re-
sults. Later Alder and Young �21�, using an extended first-
order perturbation theory with averaged quantities over the
reference HS evaluated via simulation, did find a stable hcp
phase. After the above discussion, we can return to the ques-
tion as to why the particular value 1.43� was chosen for �
+�. First of all it should be clear that our basic aim is to
show that, at low temperatures, phases with a structure dif-
ferent from the fcc structure are the equilibrium phases for
the SW model with a potential range larger than approxi-
mately �+�� �1.15�. Then, in principle, any value of �
+� that satisfies this criterion could be used for our purposes.
It is well known that the fcc�14�-fcc�18� isostructural transi-
tion appears at close packing when �+�=�2�; for larger
values of �+� this transition moves at lower densities.
Therefore for our chosen value, �+�=1.43�, this transition
is located at very high density which leaves a large region of
the phase diagram corresponding to solid stability available
for exploring the possible stability of other structures. At
larger values of �+� the number of candidate stable struc-
tures increases and the fcc�14�-fcc�18� isostructural transition
moves to lower densities; in principle, both circumstances
make the phase diagram more complex and interesting to
investigate but at the same time the analysis is much more
difficult. On the opposite side, for �+���2�, the phase
diagram is free from the fcc�14�-fcc�18� transition, the num-
ber of candidate stable structures decreasing, and the phase
diagram is expected to be simpler and easier to study. As a
compromise, we make the theoretical analysis and do MC

simulations for an intermediate value close to �2�, namely
�+�=1.43�, which includes the fcc�14�-fcc�18� transition at
high densities and also the hexagonal phase. For �+�
=1.42� the diagram is quite similar to that of Figs. 3 and 4,
but without the presence of the hexagonal phase; for a value
of 1.41 the fcc�14�-fcc�18� transition is also absent.

VI. SUMMARY AND CONCLUSIONS

In summary, we have shown that the phase diagram of the
SW model may be much more complex than previously be-
lieved. Remarkably, it seems to have at least three stable
noncompact structures; these structures would otherwise be
unstable, given that the potential contains a hard core, but in
this case they are stabilized by the attractive part of the po-
tential. The results correspond to a particular range of the
potential �, which we believe is representative for the com-
plex character of the phase diagram in general. However, we
have evidence that different values of �, even very close to
the value used here, give rise to dramatically different to-
pologies of the phase boundaries. Also, values as low as
0.15� should give rise to a stable bcc phase with respect to
the fcc; however this phase, although mechanically stable,
could very well become thermodynamically metastable with
respect to other structures �33�. The physical mechanism be-
hind the stabilization of noncompact structures is, as usual,
the balance between energy and entropy, which in this case
amounts to counting the number of particles that can accom-
modate within the potential range with an optimized free
volume. As � is increased the number of structures in the
phase diagram greatly increases. A simple analysis based on
a graph similar to that in Fig. 2 should provide a rough, first
estimate as to possible stable phases, and a more elaborate
first-order perturbation theory may refine these predictions.
Clearly the stability of the noncompact structures will de-
pend on the slope of the attractive part so that, as the poten-
tial becomes less abrupt, some phases may lose their stabil-
ity. The mechanism discussed here should also operate when
the pair potential exhibits the oscillatory behavior typical of
metallic interactions.
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APPENDIX

In this appendix we present some details of the results
obtained from two series of NPT simulations for three state
points �T , P� on the phase diagram �Fig. 4� where the phases
bcc�14�, ct�14�, and hex�20� seem to be at least metastable.
The reduced temperatures kT /� and pressures P�3 /� of these
state points are �0.70,4.00�, �0.90,28.00�, and �0.10,50.00�,
respectively. The purpose of these runs is to check whether
the stability of these structures is robust with respect to sys-
tem size and length of the simulations. In the first series of
NPT simulations we start the system in a perfect fcc configu-
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ration with 1008 particles; the simulation box sides are al-
lowed to fluctuate without any change in their orientations.
In Figs. 9 and 10 we show the evolution of the reduced
energy per particle, E /N�, and the order parameter, �, with
respect to MC steps �data points are plotted every 2000
steps�. The order parameter � was defined in an ad hoc man-
ner in order to distinguish between different tetragonal struc-
tures. For the sake of completeness, a corresponding order
parameter ��=1−a1 /a3 has also been defined for the hex�20�
phase �and a corrresponding figure included� such that it is
zero at hexagonal close packing. The instability of the fcc
phase is evident in the three cases; note that departure from
the fcc configuration occurs rather quickly. This is more eas-
ily recognized from the behavior of the order parameter,
since the reduced energy per particle of the fcc structure does
not differ very substantially from that of the bcc and ct struc-
tures. Note also that the system appears to be tending to the

bcc, ct, or hex phase in each case; however, the different
symmetries of these phases make it unlikely that the system
may arrange particles into a single homogeneous phase, and
after very long runs �longer than the 2�106 MC steps shown
in Figs. 9 and 10� one could expect at most a configuration
with different coexisting crystalline domains of the same
symmetry. Configuration snapshots �not shown� also cor-
roborate that the fcc is unstable at the above state points. One
can draw the same conclusion when simulations are per-
formed at constant volume �NVT simulations�. In this case
the system seems to evolve to the other structures, and the
instability is observed very rapidly in the simulation �first
few MC steps�. Again it is unlikely that the system may
reach homogeneous bcc, ct, and hex phases, even after very
long simulations. The second series of simulations consisted
of three NPT simulations. The system was started in each
case with configurations corresponding to bcc, ct, and hex
phases. In each case we performed simulations with different
numbers of particles: 108, 600, and 1008 for the bcc struc-
ture, 108, 500, and 1008 for the ct structure, and 125, 512,

FIG. 11. Evolution of the reduced energy per particle with MC
steps �MCS�, plotted every 4000 steps, for an NPT simulation of the
square-well model with �=0.43�. �a� Initial configuration is bcc
structure. Reduced temperature is kT /�=0.7 and reduced pressure is
P�3 /�=4. Full circles, N=108; shaded circles, N=600; and open
circles, N=1008. �b� Initial configuration is ct structure. Reduced
temperature is kT /�=0.9 and reduced pressure is P�3 /�=28. Full
circles, N=108; shaded circles, N=500; and open circles, N=1008.
�c� Initial configuration is hex structure. Reduced temperature is
kT /�=1 and reduced pressure is P�3 /�=50. Full circles, N=108;
shaded circles, N=512; and open circles, N=1000.

FIG. 9. Evolution of the reduced energy per particle with MC
steps �plotted every 2000 steps� for an NPT simulation of the
square-well model with �=0.43� and with an initial fcc configura-
tion. N=1008 particles. Black line, T=0.7� /k and p�3 /�=4; dark
gray line, T=0.9� /k and p�3 /�=28; and light gray line, T=0.1� /k
and p�3 /�=5.

FIG. 10. Evolution of the order parameter � with MC steps
�plotted every 2000 steps� for an NPT simulation of the square-well
model with �=0.43� and with an initial fcc configuration. N
=1008 particles. Key to lines as in Fig. 9.
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and 1000 for the hex structure. In each run for each phase we
constructed the initial configuration at the density obtained
from the �approximate� averaged density estimated from the
previous simulation with the smallest �108 or 125, depending
on the phase� number of particles. In order to make it easier
for the system to find an equilibrium structure possibly dif-
ferent from the initial one �bcc, ct, or hex�, we allowed the
box side lengths and their orientations to fluctuate and, in
addition, we conducted very long runs �4�106 MC steps�.
Results for the evolution of the reduced energy per particle
and the order parameter � with respect to MC steps are
shown in Figs. 11 and 12 �data points are plotted every 4000
steps�. In Fig. 13 we present the angular-averaged distribu-
tion functions. Table I shows the averaged values and the
standard deviations for the energy and order parameter ob-
tained over the last 3.9�104 MC steps. In all cases, since the
initial conditions are close to typical equilibrium configura-
tions, the equilibration period cannot be visualized in the
figures, with the exception of the order parameter in the case
of the hex phase. The angular-averaged distribution functions
obtained from simulations with different system sizes are
practically indistinguishable from each other in the bcc and
hex phases; they differ by a very small amount in the case of
the ct phase. The maximum difference �3%� occurs at contact
and at r=�+� for the ct structure with N=108 particules; in
the remaining points the difference decreases to �0.1%. For
other numbers of particles and/or structures the difference is

FIG. 12. Evolution of the order parameters � and �� with MC
steps �MCS�, plotted every 4000 steps, for an NPT simulation of the
square-well model with �=0.43�. See Fig. 11 for key to symbols.

FIG. 13. Angular-averaged distribution functions g̃�r� for the
square-well model with �=0.43� as obtained by NPT simulation
for the same values of N, reduced temperature, and reduced pres-
sure as those in Figs. 11 and 12 �for key to lines see captions of
these figures�. �a� bcc structure, �b� ct structure, and �c� hex struc-
ture. In �c� insets show detail of the first two peaks. Dark line �a�,
representing the corresponding function for the bcc structure and
N=108 particles, departs from the rest of the lines for r�1.8� due
to the simulation box being too small to contain that range of radial
distance.

TABLE I. Results of NPT simulations. For each phase and num-
ber of particles used, the averaged reduced energy per particle

E /N�� with variance �E and the averaged order parameter 
�� or

��� �the latter for the hex phase� with variance �� are given.

Phase N 
E /N�� �E 
�� or 
��� ��

bcc 108 −6.861590 0.038389 0.292469 0.016537

bcc 600 −6.867411 0.015723 0.294235 0.006961

bcc 1008 −6.868453 0.012038 0.292718 0.005465

ct 108 −6.889486 0.043789 0.065675 0.008412

ct 500 −6.887017 0.020063 0.064744 0.003385

ct 1008 −6.889486 0.012451 0.064541 0.001941

hex 125 −9.999984 0.000225 0.002490 0.000656

hex 512 −9.999985 0.000106 0.002565 0.000319

hex 1000 −9.999985 0.000075 0.002654 0.000228
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always less than 1%. The averaged reduced energy and order
parameter are also very weakly dependent on the system size
�see Table I�. Note that, as expected, the fluctuations of these
variables clearly depend on system size. Note also that the
density range of stability of the hex�20� phase is very small
and very near close-packing conditions, which explains why
the averaged reduced energy per particle is practically equal
to −10 and the corresponding fluctuations are asymmetric.

As a final remark, we note that in order to obtain reliable
averaged values �0.5–1��105 MC steps are sufficient in all
cases, save the energy and order parameter for the ct phase.
In this case averaging over this range of steps leads to de-
viations from values obtained from much longer runs of less
than 2%, which is enough for our aims. For the purpose of
obtaining accurate angular-averaged distribution functions
the above number of steps is again enough in all cases.
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